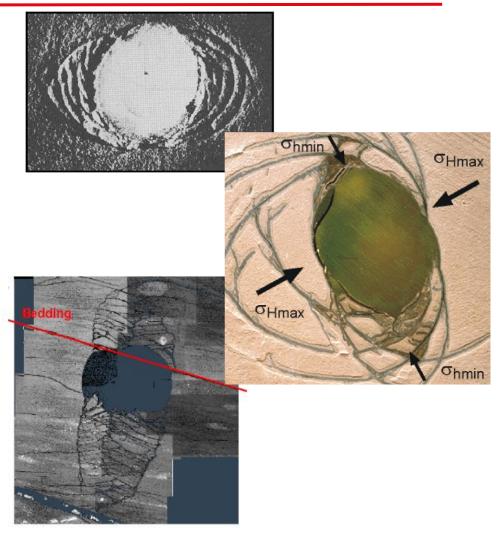


Wellbore Stability and Predicted Cuttings Volume in Deviated Wells and Bedded Formations

Alexandra Tsopela, Adam Bere, Martin Dutko, Jun Kato

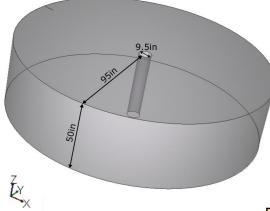
rockfieldglobal.com

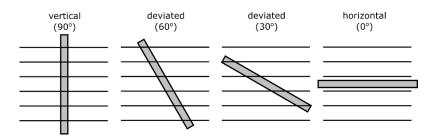

54th ROCK MECHANICS / GEOMECHANICS SYMPOSIUM GOLDEN, COLORADO 28 JUNE - 1 JULY 2020

Introduction

- Instability of subsurface excavations affect project planning
- Oil & gas industry facing increasingly difficult geological conditions
- · Prediction of instabilities is a key aspect in the success of a project
- Conventional wellbore stability analysis can be overly conservative
- Formation strength anisotropy affects failure pattern
- Efficient numerical modelling accounting for post-yield response and bedding plane effect
- Assess wellbore stability in deviated well and heterogeneous formations
- Estimate operational parameters (cuttings volume prediction)

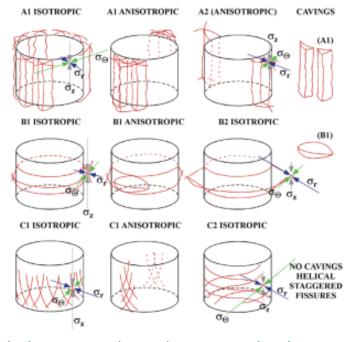
*Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. International journal of rock mechanics and mining sciences, 60, 160-170. Reinecker, J., Tingay, M., & Müller, B. (2003). Borehole breakout analysis from four-arm caliper logs. World stress map project, 1-5. Okland, D., & Cook, J. M. (1998, January). Bedding-related borehole instability in high-angle wells. In SPE/ISRM rock mechanics in petroleum engineering. Society of Petroleum Engineers.




Elfen wellbore

Swansea, UK | Houston, USA

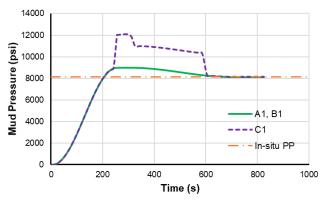
- Vertical well well axis aligned with vertical stress direction
- Well inclination with and without PoW
- Sandstone material
- ±10% stochastically varying elasticity
- Mohr-Coulomb elasto-plasticity with a Rankine tension cut-off
- Strain softening
- PoW properties: elastic (normal and tangential stiffness), plastic (friction, cohesion)


Host Rock Elastic Properties				
Young's Modulus, <i>E</i> (psi)	3e6			
Poisson's Ratio, v (-)	0.2			
Density, ρ (g/cc)	0.0058			
Host Rock Plastic Properties				
Cohesion, c (psi)	865			
Friction Angle, ϕ (°)	30			
Dilatancy, ψ , (°)	30			
Uniaxial Compressive Strength, UCS (psi)	2995			
Tensile Strength, σ_t (psi)	217			
Planes of Weakness Properties				
Stiffness Ratio Normal to PoW, E_{W}/E (-)	0.5			
Stiffness Ratio Tangential to PoW, G_w/G (-)	0.5			
Cohesion, c_w (psi)	200			
Friction Angle, $\phi_{w}(^{\circ})$	15			
Tensile Strength, σ_t (psi)	0			

Selfen wellbore

Swansea, UK | Houston, USA

Model Conditions



Theoretical rupture modes under compressional stress states (Etchecopar et al., 1999)

• A1: thrusting stress regime

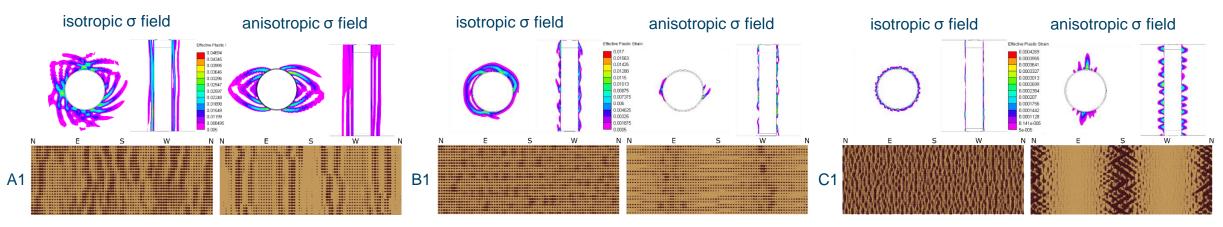
• B1, C1: extensional stress regime

		A1	B1	C1	
Vertical stres	s, σ _v	isotropic and anisotropic			
(psi)		10195.7	12744.8	12744.8	
Max horizoi	ntal	isotropic and anisotropic			
stress, σ _H (p <i>aligned N</i> ·		12744.8	10195.7	10195.7	
		isotropic			
Min horizor	ntal	12744.8	10195.7	10195.7	
stress, σ _h (osi)	anisotropic			
		11744.8	9800.7	9800.7	
In-situ Por Pressure, P (psi)	-	8131.09	8131.09	8131.09	
Max mud we P _{mud} (psi	-	9000	9000	12000	

*Etchecopar, A., P. A. Pezard, and V. Maury. "New borehole imagery techniques: an aid for failure modes and in situ stress analysis and for minimizing drilling incidents." SPWLA 40th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, 1999.

Elfen wellbore

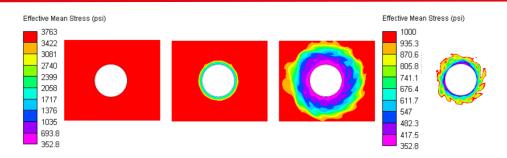
Swansea, UK | Houston, USA


- A1, A2: tangential stress exceeds material strength
- B1, B2: excessive vertical stress relatively to the internal pressure

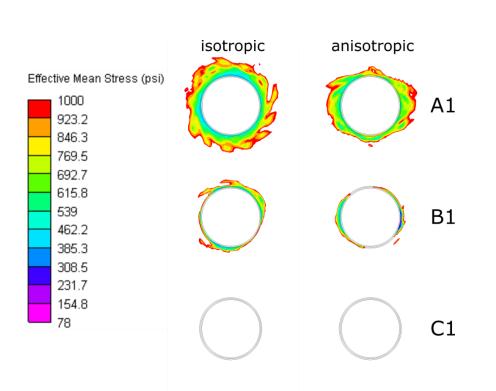
• C1, C2: excessive internal pressure relatively to external stress

Vertical well in homogeneous formation

Failure modes

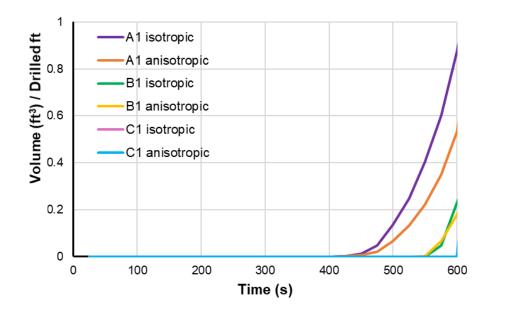


- A1: breakouts parallel to the well axis
- B1: breakouts perpendicular to the well axis
- C1: helical fractures
- Isotropic σ field: drilling stresses do not vary around the well; observed patterns occur all around the well
- Anisotropic σ field: drilling stresses vary; failure occurs in the direction of max/min stress



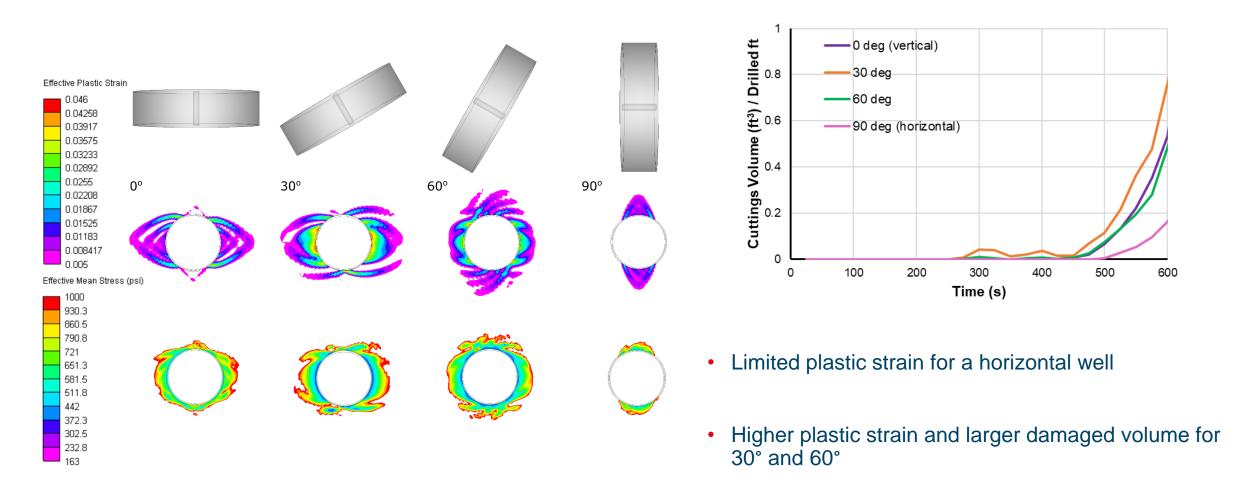
Vertical well in homogeneous formation

Volume of cuttings and cavings

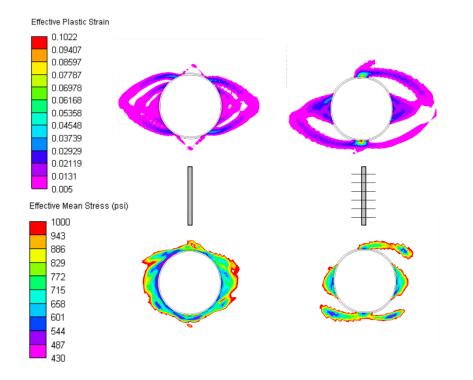

- Progressive material damage around well
- Calculation of continuously changing stresses around well
- Calculation of the volume of cuttings and cavings based on mean stress threshold (<1000 psi)
- It is assumed that undamaged material may become cavings, e.g. material bounded by localised shear bands
- Implications for predicted volume of material to surface, combined cuttings and cavings volume

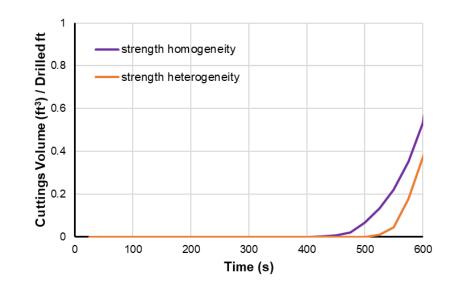
Vertical well in homogeneous formation

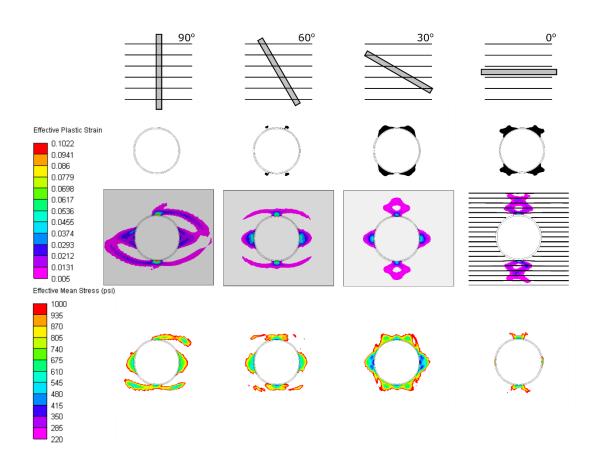
Volume of cuttings and cavings

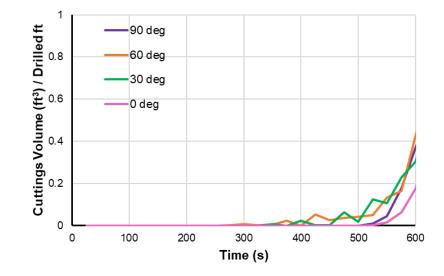

	Predicted V _{total} (ft ³ /drilled ft)	
A1 isotropic	1.09	
A1 anisotropic	0.84	
B1 isotropic	0.54	O
B1 anisotropic	0.56	\bigcirc
C1 isotropic	0.49	0
C1 anisotropic	0.49	\$

 $V_{total} = V_{cuttings} + V_{cavings}$ $V_{cuttings} = \pi r^2 h/l$ (based on the well diameter)


 $V_{cavings}$: volume of elements per drilled ft with EMS < 1000 psi (note: others magnitudes of EMS may be assessed)

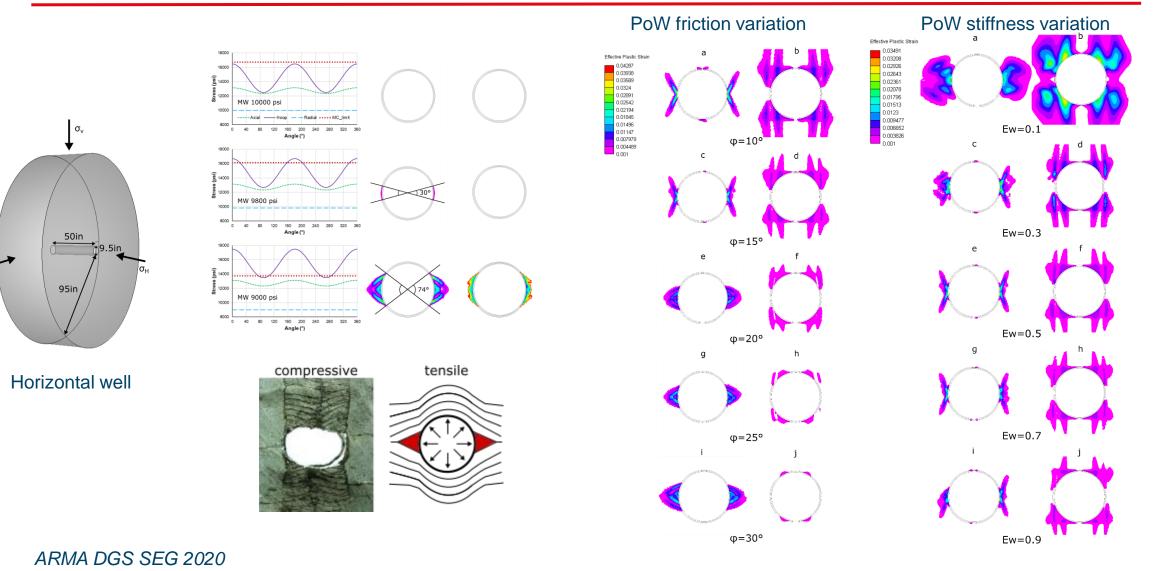

Deviated well in homogeneous formation




- Strength heterogeneity under A1 stress and loading conditions
- Well drilled perpendicularly to the PoW (safest configuration, high attack angle)
- Higher but more localized deformation
- Smaller cavings volume considering heterogeneous formation
- Limited bedding slip

Deviated well in heterogeneous formation

- As the well is inclined, the volume affected by bedding slip becomes larger
- Transition of plastic strain location and pattern
- For high attack angles, cavings are the dominant failure mechanism
- For low attack angles, bedding slip becomes dominant
- Largest volume for 30° attack angle
- Smallest volume for 90° attack angle



- Validation of software against theoretical rupture modes
- Numerical modelling to investigate complex failure modes when drilling in challenging environments
- Sensitivities considering variable well alignment with respect to the principal stresses, heterogeneous formation or both
- Complex failure patterns well represented along with post-yield softening response and dynamically changing stresses
- Calculation of representative volume corresponding to deteriorated material and undamaged cavings separated from well surface, providing information for operational parameters
- Combination of appropriate modelling, results assessment techniques and real-time field monitoring can significantly limit the risks associated with drilling in difficult conditions.

 σ_{h}

Elfen wellbore

Swansea, UK | Houston, USA

Slide 12

Rockfield ETHOS Prince of Wales Dock King's Road Swansea SA1 8AS

Tel: +44 (0)1792 455577 Email: enquiries@rockfieldglobal.com

rockfieldglobal.com

Swansea, UK | Houston, USA